傅里葉發(fā)明的傅里葉變換與傅里葉級(jí)數(shù)是什么?
關(guān)于傅里葉簡(jiǎn)介,傅里葉出生于法國(guó)的歐塞爾,可以說(shuō)一生都是為科學(xué)而做著努力的,傅里葉出生在一個(gè)裁縫的家庭,但是不幸的是,在他9年的那年,父母就已經(jīng)去世,而他也成為一名孤兒,所幸后來(lái)傅里葉被一個(gè)當(dāng)?shù)氐闹鹘趟震B(yǎng),并且對(duì)方還培養(yǎng)傅里葉長(zhǎng)大成人,送他去了當(dāng)時(shí)的軍校,并且在1795年的時(shí)候,傅里葉憑著自己的優(yōu)異成績(jī),成功擔(dān)任起巴黎綜合工科大學(xué)的助教。但是后來(lái),戰(zhàn)爭(zhēng)到來(lái)了,1798年的時(shí)候,傅里葉不得不跟隨拿破侖軍隊(duì),前往埃及,所幸的是,他在部隊(duì)的時(shí)候也很受拿破侖的器重,以至于回國(guó)后的1801年,傅里葉被任命為一名地方長(zhǎng)官。
其實(shí)早在此前開(kāi)始,傅里葉本人就已經(jīng)表現(xiàn)出了對(duì)于科學(xué)和物理方面的興趣。1807年,他寫(xiě)出了關(guān)于熱傳導(dǎo)的一篇論文,期望得到巴黎科學(xué)院的重視,但是卻被拒絕了,可是他沒(méi)有放棄,先后進(jìn)行了修改,后來(lái)竟然獲得了科學(xué)院的大獎(jiǎng),雖然后來(lái)一直沒(méi)有發(fā)表。后來(lái),關(guān)于函數(shù)的研究,更使他成為受關(guān)注的對(duì)象。1817年,傅里葉被成功擔(dān)任起巴黎科學(xué)院的院士。后來(lái),傅里葉的科學(xué)研究真正開(kāi)始了,成果也是非常多的,包括以他自己的名字命名的傅里葉變換和傅里葉級(jí)數(shù),這一切的一切,都與他本人的科學(xué)態(tài)度是分不開(kāi)的。也正因?yàn)槿绱耍?822年,傅里葉成為巴黎科學(xué)院的終身秘書(shū)。
說(shuō)起偉大的數(shù)學(xué)家和物理學(xué)家傅里葉,不得不說(shuō)到他的傅里葉變換,直到現(xiàn)在,這一方法都是影響非常大的,那么,到底該怎么正確認(rèn)識(shí)這一理論方法呢?首先,需要清楚的是,傅立葉變換其實(shí)是一種可以用來(lái)研究信號(hào)的方法,也就是說(shuō),利用它可以來(lái)分析信號(hào)的組成成分,當(dāng)然也可用把這些成分合起來(lái)形成信號(hào)。而且,其實(shí)作為信號(hào)的成分的波形是有很多的,甚至是五花八門(mén)的,而傅里葉變化則是用正弦波來(lái)作為其成分的。說(shuō)起這一理論方法來(lái),首先它是可以將只要是滿(mǎn)足了一定條件的一個(gè)函數(shù),用三角函數(shù)的形式來(lái)進(jìn)行表示,而且,在不同的研究領(lǐng)域里,這一理論方法也有著不同的形式,可以說(shuō)是非常實(shí)用的。
那么,到底傅里葉發(fā)明的這一變換是采用的什么樣的方法的呢?其實(shí)它采用的是兩種方法,一種是實(shí)數(shù)的,是很容易理解的,復(fù)數(shù)的話(huà),想對(duì)來(lái)說(shuō)比較復(fù)雜,涉及到很多比較專(zhuān)業(yè)的知識(shí),但是其實(shí)如果了解了實(shí)數(shù)的離散的話(huà),就不那么難理解了,時(shí)至今日,這一理論方法仍然發(fā)揮著非常重要的作用。從這一理論方法中,還衍生出了傅里葉家族,其成員函數(shù)可以是在一定情況下呈現(xiàn)出一定的規(guī)律的,當(dāng)然有的時(shí)候也呈現(xiàn)非周期性的規(guī)律,但是不管怎么說(shuō),這一理論方法對(duì)于數(shù)字信號(hào)處理等領(lǐng)域都有著極為重要的意義。
說(shuō)起偉大的法國(guó)數(shù)學(xué)家和物理學(xué)家傅里葉,人們很容易會(huì)想到他的有名的傅里葉級(jí)數(shù)。確實(shí)如此,時(shí)至今日,在相關(guān)的研究領(lǐng)域,這一理論都是值得去探討的。當(dāng)年,傅里葉經(jīng)常長(zhǎng)時(shí)間的研究后,他發(fā)現(xiàn)了基本上所有的函數(shù)都可以用無(wú)窮極的一種形式來(lái)表示出來(lái),后來(lái)他還更加證實(shí)了自己的這一方面,而后人把他的這一發(fā)現(xiàn)作為他的一項(xiàng)重要的研究成果。那么,到底什么才是傅里葉級(jí)數(shù)呢?即所有的函數(shù)都能夠用正弦函數(shù)和余弦函數(shù),以及他們所形成的無(wú)窮級(jí)數(shù)來(lái)進(jìn)行表示,也即現(xiàn)在所說(shuō)的特殊的三角函數(shù),而根據(jù)后來(lái)的研究,加以運(yùn)用著名的歐拉公式,發(fā)現(xiàn)可以將傅里葉的這一級(jí)數(shù)發(fā)現(xiàn)稱(chēng)為一種指數(shù)級(jí)數(shù)。
那么,傅里葉的這一重要發(fā)現(xiàn)到底有什么特點(diǎn)呢?其中一個(gè)是它的收斂性,也就是說(shuō),在符合狄利赫里條件的情況下的周期函數(shù),如果把它們表示成為傅里葉級(jí)數(shù)的話(huà),它們都是收斂的。另外一個(gè)特點(diǎn)叫做正交性,也就是說(shuō),兩個(gè)不一樣的向量,它們的內(nèi)積為0,也就是它們之間完全沒(méi)有關(guān)系的話(huà),成為正交性。如今,傅里葉的關(guān)于級(jí)數(shù)的發(fā)現(xiàn),在很多領(lǐng)域中都發(fā)揮著重要的作用,尤其是在信號(hào)處理領(lǐng)域,處理各種信號(hào)的干擾的時(shí)候,起著越來(lái)越大的作用。正也是科學(xué)家為科學(xué)史所作出的重要的貢獻(xiàn),影響著越來(lái)越多的人。
相關(guān)文章
推薦閱讀
- 1哲學(xué)家尼采為什么說(shuō)“我是太陽(yáng)” 尼采的哲學(xué)觀(guān)點(diǎn)
- 2絲綢之路主要商品是什么?絲綢之路的興衰歷史
- 3米開(kāi)朗基羅曾師承于誰(shuí)?米開(kāi)朗基羅有多少情人
- 4澶淵之盟發(fā)生在什么時(shí)候?澶淵之盟因何聞名于史
- 5己亥建儲(chǔ)的陰謀是什么?己亥建儲(chǔ)是立誰(shuí)為太子
- 6南懷仁是誰(shuí)?南懷仁為什么要來(lái)中國(guó)
- 7貝多芬是如何失聰?shù)??失聰后如何進(jìn)行音樂(lè)創(chuàng)作呢
- 8市場(chǎng)花園行動(dòng)具體是什么?市場(chǎng)花園行動(dòng)為何慘敗
- 10